The Crystal and Molecular Structure of the Novel Molybdenum-Phosphine Complex $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoP}_{2} \mathrm{H}_{2}$

By Elio Cannillo and Alessandro Coda
Centro di Studio per la Cristallografia Strutturale del CNR, Via Bassi 4, 27100 Pavia, Italy

and Keith Prout and Jean-Claude Daran
Chemical Crystallography Laboratory, 9 Parks Road, Oxford OX1 3PD, England

(Received 14 January 1977; accepted 18 February 1977)

Abstract

The structure of $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoP}_{2} \mathrm{H}_{2}$ has been determined by X -ray methods [monoclinic, $a=13.209$ (4), $b=$ 7.644 (2). $c=11.708$ (3) $\AA, \beta=113.58(2)^{\circ}, Z=4$, space group $C c$, Mo $K a$ radiation, 1837 reflexions 1 and refined by full-matrix least squares ($R=0.035$). The presence of the

chelate system has been confirmed (Mo-P 2.54, P-P 2.14 \AA, P-Mo-P 49.9, P-P-Mo 65.1°).

Introduction

Bis- η-cyclopentadienylmolybdenum hydride reacts smoothly with excess white phosphorus in toluene at $90^{\circ} \mathrm{C}$ to give a solution from which, after purification, deep red crystals may be isolated. Analysis, the mass spectrum, and ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra are all consistent with the formulation $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoP}_{2} \mathrm{H}_{2}$. Spectroscopic methods do not distinguish between the planar trans, the non-planar and the fluxional cis or trans configurations of the $\mathrm{MoP}_{2} \mathrm{H}_{2}$ system, although the second was preferred by analogy with related systems (Green, Green \& Morris, 1974). Unlike in most phosphines reported, each P in $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoP}_{2} \mathrm{H}_{2}$ behaves as a one-electron ligand.

The structure has been determined by X-ray methods to try to resolve this configurational problem and to derive the dimensions of this novel system.

Experimental

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{MoP}_{2}, \quad M_{r}=290 \cdot 1$, monoclinic, $a=$ $13.209(4), b=7.644(2), c=11.708$ (3) $\AA, \beta=$ $113.58(2)^{\circ}, V=1083 \AA^{3}, D_{c}($ for $Z=4)=1.80 \mathrm{~g}$ cm^{-3}. Systematic extinctions $h k l, h+k=2 n+1 ; h 0 l$, $l=2 n+1(h=2 n+1) ;(0 k 0, k=2 n+1)$, indicated space groups $C c$ or $C 2 / c$. Mo $K \alpha$ radiation, $\lambda=$ $0.71069 \AA, \mu=14.3 \mathrm{~cm}^{-1}$, crystal size $0.3 \times 0.4 \times$ 0.4 mm .

The lattice parameters were determined with a Philips PW1100 single-crystal automatic diffractometer and refined by least-squares best fit for 25 reflexions. The intensities were collected with Mo $K \boldsymbol{K}$ radiation monochromatized by a flat graphite crystal. A unique set was collected (θ range $2-30^{\circ}$) in the $\omega-2 \theta$ scan mode, with a symmetrical scan range of 1.8° in 2θ from the calculated scattering angles. The scan rate was $0.5 \mathrm{~s}^{-1}$. The data were processed by the Davies \& Gatehouse (1974) method. The intensities were not corrected for absorption. Of the 1892 independent reflexions inspected, 55 with $I<\sigma(I)$ were assumed to be unobserved.

An unsharpened Patterson function suggested a centrosymmetric arrangement of Mo atoms on twofold axes. The subsequent Mo-phased F_{o} synthesis indicated P and C sites for a trial structure in $\mathrm{C} 2 / \mathrm{c}$. Refinement of the trial (full-matrix least squares with isotropic then with anisotropic temperature factors) to convergence at $R 0.048$ gave a structure with unsatisfactory dimensions for the $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ group. Examination of the Moand P-phased difference synthesis showed that the electron density of the $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ group was broad and diffuse. To take this into account two further trial structures were set up. One was in $C c$ with the twofold axis removed by small rotations of the C_{3} rings about their centroids. The other was a disordered model in $C 2 / c$ based on the same displacements of the C_{5} rings. All three models were refined by full-matrix least squares with unit weights and anisotropic temperature factors. However, in each case the C_{3} ring(s) were constrained to chemically reasonable dimensions by the
method of Waser (1963) implemented by Rollett \& Carruthers (1975) to avoid ill-conditioned normal matrices. The following constraints were applied: (a) $\mathrm{C}-\mathrm{C} 1.40 \pm 0.01 \AA$. (b) $\mathrm{C}-\mathrm{C}-\mathrm{C} 108 \pm 1^{\circ},(c)$ C-Mo $2.30 \pm 0.01 \AA,(d)$ the C_{5} ring to be planar with an e.s.d. $0.01 \AA$, (e) the difference in r.m.s. amplitude of vibration in the direction of the $\mathrm{C}-\mathrm{C}$ bond of two bonded C atoms in the C_{5} ring to be $0.000 \pm$ $0.006 \AA^{2}$. The ordered model in C2/c reached convergence at $R 0.048$, the disordered model in $C 2 / c$ at 0.042 and the ordered model in $C c$ at 0.0383 . An F test indicated the non-centrosymmetric solution was the most probable of the trials. The refinement of this continued with the weighting scheme $w=$ $1 / \sum_{r=1}^{n} A_{r} T_{r}^{*}(X)$ with n coefficients, A_{r} for the Chebyshev polynomial $T_{r}^{*}(X)$ where X is F_{o} / F_{o} (max) (Rollett, 1965) ($n=3$ and $A_{r}=1869,2590$ and 781) and a Larson (1970) secondary extinction correction with parameter 25. Convergence was reached at $R 0.035$ and $R_{w} 0.043$ after the removal of constraint (c). An unconstrained refinement in $C c$ converged at $R 0.033$ and $R_{w} 0.0402$, but the spread of bond lengths and angles in the C_{5} rings was unacceptable ($\mathrm{C}-\mathrm{C} 1 \cdot 15-$ $1.44 \AA ; \mathrm{C}-\mathrm{C}-\mathrm{C} 105 \cdot 1-113.0^{\circ}$). At no stage in any of the refinements could H atoms be unambiguously identified in the region of the P atoms. A difference map in the plane of the C_{5} ring calculated for the Cc model at $R 0.038$ indicated H atom sites but when these were included in the refinement there was no improvement in R.
The non-centrosymmetric model is not inconsistent with the $N(Z)$ test (Rogers, Howells \& Phillips, 1950)
nor with the properties of the normalized structure factors (Karle \& Hauptman, 1953).

The initial refinement of the unconstrained $C 2 / c$ model was carried out in Pavia on the Honeywell computer at the Centro di calcolo dell'Universita di

Table 2. Interatomic distances (\AA) and interbond angles $\left({ }^{\circ}\right)$

Standard deviations are in parentheses.

$\mathrm{Mo}-\mathrm{C}(1)$	$2.280(8)$	${ }^{*} \mathrm{C}(1)-\mathrm{C}(2)$	1.384
$\mathrm{Mo}-\mathrm{C}(2)$	$2.290(7)$	$\mathrm{C}(1)-\mathrm{C}(3)$	1.382
$\mathrm{Mo-C}(3)$	$2.282(8)$	$\mathrm{C}(3)-\mathrm{C}(4)$	1.396
$\mathrm{Mo}-\mathrm{C}(4)$	$2.301(8)$	$\mathrm{C}(4)-\mathrm{C}(5)$	1.380
$\mathrm{Mo}-\mathrm{C}(5)$	$2.290(7)$	$\mathrm{C}(5)-\mathrm{C}(1)$	1.399
$\mathrm{Mo} \mathrm{C}(6)$	$2.296(9)$	$\mathrm{C}(6)-\mathrm{C}(7)$	1.394
$\mathrm{Mo} \mathrm{C}(7)$	$2.290(9)$	$\mathrm{C}(7)-\mathrm{C}(8)$	1.380
$\mathrm{Mo}-\mathrm{C}(8)$	$2.268(8)$	$\mathrm{C}(8)-\mathrm{C}(9)$	1.396
$\mathrm{Mo--C}(9)$	$2.289(8)$	$\mathrm{C}(9)-\mathrm{C}(10)$	1.382
$\mathrm{Mo-C}(10)$	$2.306(8)$	$\mathrm{C}(10)-\mathrm{C}(6)$	1.384
$* \mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	107.5	${ }^{*} \mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	107.5
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	108.9	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	108.0
$\mathrm{C}(3) \mathrm{C}(4) \mathrm{C}(5)$	107.3	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	108.3
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	108.2	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(6)$	107.5
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)$	108.1	$\mathrm{C}(10)-\mathrm{C}(6)-\mathrm{C}(7)$	108.6
$\mathrm{Mo-P}(1)$	$2.550(4)$	$\mathrm{P}(1)-\mathrm{Mo}-\mathrm{P}(2)$	$49.91(7)$
$\mathrm{Mo} \mathrm{P}(2)$	$2.536(5)$	$\mathrm{Mo}-\mathrm{P}(1)-\mathrm{P}(2)$	$64.7(2)$
$\mathrm{P}(1)-(2)$	$2.146(3)$	$\mathrm{Mo}-\mathrm{P}(2)-\mathrm{P}(1)$	$65.4(2)$

${ }^{*} \mathrm{C}-\mathrm{C}$ distances were constrained to be $1.40 \AA$ with an e.s.d. of $0.01 \AA$ and $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles to be 108° with an e.s.d. of 1°.

Table 1. Fractional atomic coordinates and anisotropic temperature factors

	x	$y \quad z$			x	y	z
Mo	0.0000	0.02376 (4)	(4) 0.2500	C(5)	-0.1868 (7)	-0.002 (2)	0.140 (1)
P(1)	0.0391 (5)	0.3272 (5)	0.3486 (4)	C(6)	$0 \cdot 1827$ (8)	0.076 (1)	0.293 (2)
$\mathrm{P}(2)$	0.0250 (8)	0.3230 (7)) 0.1488 (5)	C(7)	0.133 (1)	0.012 (3)	0.172 (1)
C(1)	0.1679 (7)	0.062 (1)	0.259 (1)	C(8)	0.0981 (7)	-0.156 (3)	0.178 (2)
C(2)	$0 \cdot 1127$ (6)	-0.065 (1)	$0 \cdot 3450$ (7)	C(9)	$0 \cdot 1276$ (9)	-0.197 (1)	0.304 (2)
C(3)	0.0965 (7)	-0.206 (1)	0.280 (1)	C(10)	0.1794 (7)	-0.053 (2)	0.3741 (8)
C(4)	0.1430 (9)	-0.168 (2)	0.153 (1)				
	U_{11}		U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Mo	0.0287 (1)		0.0310 (2)	0.0330 (2)	-0.0003 (4)	0.0112 (1)	0.0048 (3)
P (1)	0.128 (3)		0.032 (1)	0.062 (2)	-0.010 (1)	0.014 (2)	-0.008 (1)
$\mathrm{P}(2)$	0.271 (9)		0.046 (2)	0.072 (3)	0.018 (2)	0.022 (4)	-0.012 (3)
C(1)	0.060 (6)		0.14 (1)	0.103 (8)	0.027 (7)	0.046 (6)	0.059 (6)
C(2)	0.048 (3)		0.083 (5)	0.051 (3)	0.003 (3)	0.031 (3)	-0.010 (3)
C(3)	0.067 (6)		0.051 (4)	0.118 (8)	-0.006 (4)	0.048 (6)	-0.023 (3)
C(4)	0.064 (6)		0.14 (1)	0.089 (6)	-0.046 (7)	0.036 (5)	-0.056 (7)
C(5)	0.036 (4)		$0 \cdot 17$ (1)	0.062 (5)	0.025 (6)	-0.008 (4)	-0.005 (6)
C(6)	0.054 (5)		$0 \cdot 110$ (9)	0.16 (1)	0.025 (8)	0.050 (8)	-0.017 (6)
C(7)	$0 \cdot 11$ (1)		0.21 (2)	$0 \cdot 11$ (1)	0.05 (1)	0.09 (1)	0.07 (1)
C(8)	0.057 (6)		0.18 (2)	$0 \cdot 12$ (1)	-0.08 (1)	0.022 (7)	0.031 (9)
C (9)	0.069 (7)		0.052 (4)	0.19 (1)	0.016 (6)	0.060 (9)	0.028 (4)
C(10)	0.047 (5)		$0 \cdot 107$ (7)	0.060 (5)	0.016 (4)	0.017 (4)	0.038 (5)

Pavia with local programs. All subsequent calculations were performed in Oxford on the OUCL ICL 1906A computer with the Oxford CRYSTALS package (Carruthers, 1976).*
The final atomic parameters are in Table 1. Table 2 gives the interatomic distances and interbond angles with standard deviations calculated from the full variance-covariance matrix.

Discussion

The crystals are made up from isolated molecules of composition ($\left.\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoP}_{2}$ (Fig. 1). There is no direct evidence from electron density maps to show any H attached to P atoms, although their presence must be inferred from the spectroscopic data.

The normals to the mean planes of the $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ rings at the Mo atom are both $1.961 \AA$ long and are inclined at an angle of 137°. The line of intersection of the $\mathrm{P}-\mathrm{Mo}-\mathrm{P}$ plane and the ring normal plane does not bisect this angle, but makes angles of 72.1 and 64.9° to rings $C(6)$ to $C(10)$ and $C(1)$ to $C(5)$ respectively. The skewness of the molecule can be seen in Fig. 2 in which the molecule is shown projected on the $\mathrm{P}-\mathrm{Mo}-\mathrm{P}$ plane. This deformation is presumed to be related to an intramolecular interaction between H atoms attached to P atoms and one cyclopentadienyl ring. The rings are roughly eclipsed.

The MoP_{2} plane is inclined at an angle of 92.3° to the plane of the normals to the cyclopentadienyl rings.

[^0]

Fig. 1. The crystal structure of $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoP}_{2} \mathrm{H}_{2}$ seen in projection down \mathbf{b}.

The $\mathrm{P}_{2} \mathrm{H}_{2}$ group forms a three-membered chelate ring at the Mo with a very acute $\mathrm{P}-\mathrm{Mo}-\mathrm{P}$ angle of 49.9°.

The Mo-P bonds, 2.550 and $2.526 \AA$, are longer than $\mathrm{Mo}-\mathrm{Cl}(2.47 \AA$. Prout, Cameron, Forder, Critchley, Denton \& Rees, 1974) and Mo-S $12.50 \AA$ (mean), Prout, Critchley \& Rees, 19741, and this is consistent with the greater covalent radius of P . The P-P bond, $2.146 \AA$, is somewhat shorter than in black, $2 \cdot 18$, or white, $2 \cdot 21 \AA$, phosphorus and in various phosphines, e.g. $\mathrm{P}_{2} \mathrm{I}_{4} 2.212$ (Leung \& Waser, 1956); $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{P}\right)_{5} 2 \cdot 217$ (Daly, 1964); $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{P}\right)_{4} \mathrm{~S} 2 \cdot 190$ (mean) (Calhoun \& Trotter, 1974); $\left(\mathrm{CF}_{3} \mathrm{P}\right)_{4} 2 \cdot 21 \AA$ (Palenik \&

Fig. 2. The $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoP}_{2} \mathrm{H}_{2}$ molecule seen projected onto the $\mathrm{P}-\mathrm{Mo}-\mathrm{P}$ plane.

Fig. 3. Thermal ellipsoids of the $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoP}_{2} \mathrm{H}_{2}$ molecule seen in projection down \mathbf{b}.

Donohue, 1962), but is substantially longer than in P_{2}, $1.89 \AA$ (Douglas \& Rao, 1958). The P-P linkage appears therefore to be essentially a single bond. In this case the $\mathrm{MoP}{ }_{2} \mathrm{H}_{2}$ group would be expected to be noncoplanar like the phosphines above and to have angles at P markedly less than the tetrahedral value. Of the possible non-coplanar forms of the phosphine ligand, the cis form is consistent with the fact that the $\mathrm{Mo}-\mathrm{P}_{2}$ plane does not bisect the angle formed by the normals to the mean planes of the η-cyclopentadienyl rings, as both H atoms on the same side repulse some C atoms of the corresponding cyclopentadienyl ring, thereby increasing the angle.

Thermal ellipsoids are represented, in projection down \mathbf{b}, in Fig. 3. The large difference between the two P thermal ellipsoids might have the following explanation. From the estimated H atom positions of the $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ group, Fig. 2, it appears that the surroundings of the P atoms are quite different, and distances from $P(2)$ to $H(1)$ and $H(2), 3.35$ and $3.00 \AA$, are longer than those from $P(1)$ to $H(1)$ and $H(2), 3.00$ and 2.45 \AA. The vibration of $P(1)$ is, therefore, restricted while $P(2)$ is free to move.

References

Calhoun, H. P. \& Trotter, J. (1974). J. Chem. Soc. (D), pp. 382-386.

Carruthers, J. R. (1976). CRYSTALS User Manual, Oxford Univ. Computing Laboratory.
Daly, J. J. (1964). J. Chem. Soc. pp. 6147-6166.
Davies, J. E. \& Gatehouse, B. M. (1974). J. Chem. Soc. (D) , pp. 184-187.

Douglas, A. E. \& Rao, K. S. (1958). Canad. J. Phys. 36, 565-570.
Green. J. C.. Green, M. L. H. \& Morris, G. E. (1974). Chem. Commun. pp. 212-213.
Karle. J. \& Hauptman, H. (1953). In The Solution of the Phase Problem, ACA Monograph No. 3. Ann Arbor, Michigan: Edwards.
Larson. A. C. (1970). Crystallographic Computing, pp. 291-294. Copenhagen: Munksgaard.
Leung. Y. C. \& Waser, J. (1956). J. Phys. Chem. 60, 539543.

Palenik. G. J. \& Donohue, J. (1962). Acta Cryst. 15, $564-$ 569.

Prout, C. K., Cameron. T. S., Forder, R. A., Critchley, S. R.. Denton, B. \& Rees, G. V. (1974). Acta Cryst. B30, 2290-2304.
Prout, C. K., Critchley, S. R. \& Rees, G. V. (1974). Acta Cryst. B30, 2305-2311.
Rogers, D.. Howells, E. R. \& Phillips, D. C. (1950). Acta Crıst. 3, 210-2 14.
Rollett, J. S. (1965). Computing Methods in Crystallography, edited by J. S. Rollett, p. 40. Oxford: Pergamon Press.
Rollett, J. S. \& Carruthers, J. R. (1975). Private communication.
Waser, J. (1963). Acta Cryst. 16, 1091-1094.

Stacking Patterns of Thiopyrimidines: The Crystal Structure of 2-Thiocytosine Picrate

By Lawrence J. Delucas, Richard A. Hearn and Charles E. Bugg
Institute of Dental Research, University of Alabama in Birmingham, University Station, Birmingham, Alabama 35294, USA

(Received 16 September 1976; accepted 31 December 1976)
$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{~S} . \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}$, monoclinic, $P 2_{1} / c, a=12.430$ (1), $b=15.594$ (1), $c=7.239$ (3) $\AA, \beta=99.81$ (3) ${ }^{\circ}$, $Z=4, D_{x}=1.713, D_{m}=1.71 \mathrm{~g} \mathrm{~cm}^{-3}$. The structure was solved by use of 2305 symmetry-independent reflections measured on a diffractometer, and was refined by least squares to $R=0.091$. The crystal structure consists of ribbons of stacked thiocytosine cations hydrogen-bonded to the picrate anions and to neighboring thiocytosine moieties. No stacking interactions were observed between thiocytosine cations and picrate anions.

Introduction

The ability of thiopyrimidine residues to stabilize the secondary structure of polynucleotides has been attributed to enhanced base-stacking interactions induced by the sulfur substituents (Faerber, Scheit \& Sommer, 1972; Scheit \& Gaertner, 1969; Bahr, Faerber \&

Scheit, 1973). Recent reviews have suggested that the bases in crystal structures of thiopyrimidines generally exhibit characteristic stacking patterns that involve intimate contacts between the sulfur substituent of one base and the ring systems of neighboring bases (Saenger, 1973; Saenger \& Suck, 1973). We determined the crystal structure of 2-thiocytosine picrate to

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32530 (13 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CHI 1NZ, England.

